
DOI: 10.4018/IJSI.333164

International Journal of Software Innovation
Volume 12 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Novel Spatial Data Pipeline for
Orchestrating Apache NiFi/MiNiFi
Chase D. Carthen, University of Nevada, Reno, USA*

 https://orcid.org/0009-0006-7027-5212

Araam Zaremehrjardi, University of Nevada, Reno, USA

Vinh Le, University of Nevada, Reno, USA

Carlos Cardillo, University of Nevada, Reno, USA

Scotty Strachan, Nevada System of Higher Education, USA

Alireza Tavakkoli and Maketitle, University of Nevada, Reno, USA

Frederick C. Harris Jr., University of Nevada, Reno, USA

 https://orcid.org/0000-0002-0857-6931

Sergiu M. Dascalu, University of Nevada, Reno, USA

ABSTRACT

In many smart city projects, a common choice to capture spatial information is the inclusion of lidar
data, but this decision will often invoke severe growing pains within the existing infrastructure. In this
article, the authors introduce a data pipeline that orchestrates Apache NiFi (NiFi), Apache MiNiFi
(MiNiFi), and several other tools as an automated solution to relay and archive lidar data captured
by deployed edge devices. The lidar sensors utilized within this workflow are Velodyne Ultra Puck
sensors that produce 6-7 GB packet capture (PCAP) files per hour. By both compressing the file
after capturing it and compressing the file in real-time; it was discovered that GZIP and XZ both
saved considerable file size being from 2-5 GB, 5 minutes in transmission time, and considerable
CPU time. To evaluate the capabilities of the system design, the features of this data pipeline were
compared against existing third-party services, Globus and RSync.

KeywORDS
Big Data, Data Pipeline, Data Transfer, Edge Computing, IOT, Lidar, MiNiFi, NiFi, PCAP, Smart City,
Spatial Data

INTRODUCTION

As cities begin employing more and more complex sensing devices to either conduct traffic analysis
or provide a measure of infrastructure, creating a system for data transferal becomes a crucial
challenge. For smart city projects, spatial information such as Light Detection and Ranging (lidar)
is especially a concern. Due to the massive amount of data generated by lidar point clouds, data

https://orcid.org/0009-0006-7027-5212
https://orcid.org/0000-0002-0857-6931

International Journal of Software Innovation
Volume 12 • Issue 1

2

collection and transferal from edge device to central repository tends to suffer from bottle-necking
issues, such as low throughput networking, high latency, and packet-loss. These constraints must be
considered as most cities in the United States may have difficulty placing fiber optic infrastructure
in their cities (Cooper, 2022).

As part of ongoing smart city developments in the city of Reno, Nevada, the work presented
within this paper involves a 100 mbps fiber network provided by the city of Reno. While this network
was deployed to specifically address the cyber-infrastructure needs within the city of Reno, this called
for the development of a Software Data Pipeline (SDP) that could enable reliable data transformation,
transferal, and logging between edge computers and the fog computing network.

In this paper, the authors developed an SDP that leverages NiFi/MiNiFi to facilitate the movement
of lidar data generated at various edge computing locations placed around the city of Reno, specifically
the Virginia Street corridor. This data is relayed to the fog computing network located at the University
of Nevada, Reno (UNR), which is then finally piped towards its destination, UNR’s Pronghorn High
Performance Computing Cluster, for archival storage. The software on the edge environments use
Docker Compose with MiNiFi to hook into the NiFi-based data pipeline in which the lidar point-
clouds are compressed and then transmitted off. The software within the UNR Data Center uses
Kubernetes to scale up NiFi hosts and receive the lidar point clouds, which are then processed for
storage. To ease any confusion, the name “UNR-Virginia SDP” was chosen as the colloquial name
to refer to the SDP approach presented in this paper.

The UNR-Virginia SDP does offer some insights for those interested in establishing a scalable
pipeline for spatial data collection within smart city infrastructure (Duygan et al., 2022). With the
increasing interest in smart city development, the UNR-Virginia SDP provides a template so that other
cities with similar network infrastructure may easily incorporate lidar data collection as part of their
normal workflow. Due to the versatility of lidar data, lidar collection presents more opportunities
for cities to better utilize big data methodologies for effective planning or the establishment of new
data-driven solutions (McCrae & Zakhor, 2020; Zhao et al., 2019).

As a form of evaluation for the UNR-Virginia SDP, the authors conducted an analysis of different
compression algorithms, compared the discussed approach with the present network bandwidth,
and finally performed a feature comparison with major established third-party services, RSync
(Davison, 2023) and Globus (Foster et al., 2012). Furthermore, additional metrics gathered from the
UNR-Virginia SDP were recorded, such as the bandwidth usage, resource usage on edge devices,
and recording time for message transfer. To elaborate, this involved testing different compression
methods in terms of resource usage, average CPU usage, average memory usage, total duration time,
and size of messages. As part of the feature comparison, RSync and Globus were compared against
the UNR-Virginia SDP for basic functionality of data transmission and receiving, load balancing,
parallel streaming support, the customization of data flow, and file verification.

The remainder of this paper is structured as follows: the first section presents background
information of the technologies explored and used by the UNR-Virginia SDP, the second section
describes the design of the UNR-Virginia SDP with considerations and expected requirements of the
data pipeline, the third section details the resulting implementation of the planned design and data
flow, the fourth section presents the overall performance evaluation of the software data pipeline
with benchmarks and comparisons of other methods, and the final section discusses possible uses of
the data pipeline and outlines future work to extend its functionality.

BACKGROUND AND ReLATeD wORKS

Data Pipeline Approaches
With the increasing interest in both cloud and fog computing, different approaches have been explored
to facilitate streams of data that require high throughput, intense bandwidth usage, and consistent
access across different network scenarios. In general, the very nature of these data streams presents

International Journal of Software Innovation
Volume 12 • Issue 1

3

certain difficulties to system architects when designing the software and may require advanced big
data techniques. In response to this, SDPs are often presented as solutions to abstracting data streams
by utilizing either custom software or preexisting suites of third-party tools. One such SDP approach
differs from the UNR-Virginia SDP presented in this paper and explored a combination of MQTT
and Apache Kafka for processing data streams originating from industrial IoT devices. Both Helu
et al. (2020) and Raptis et al. (2023) have used MQTT and Apache Kafka in conjunction with NiFi
for industrial replated applications. Another similar SDP approach involved the usage of NiFi and
MiNiFi to process spatial information captured from Twitter streams while doing some analysis on
the acquired data. Kim et al. (2019) designed a custom NiFi processor for extracting spatial data from
data sources such as Twitter. Pandya et al. (2019) made use of this approach by extracting data from
Twitter with NiFi and MiNiFi and doing sentiment analysis on the acquired data.

NiFi/MiNiFi
A major portion of the UNR-Virginia SDP relies on NiFi and MiNiFi. Together, NiFi and MiNiFi are
especially viable for SDPs in that they enable APIs to build data transformers, loggers, and other data
flow measures. NiFi is composed of components called “Processors”, and the data passed between
these processors, dubbed “Flow Files”, contain the data being transferred and additional metadata
pertaining to the transfer. These processors used in a NiFi pipeline allow one to create, remove, modify,
or inspect the contents of a flow file. Additionally, NiFi/MiNiFi allows users to create their own
processors, which opens the door for greater control and manipulation of the data within a pipeline.
NiFi operates with data producers and data consumers, dubbed “Agents”, and alongside the flow
files and processors, represent the abstract building blocks to an SDP within NiFi. However, NiFi
has the capability of over-bloating a system with tools that are not necessary for remote systems with
constrained resources. While NiFi offers the full-suite of tools for building data pipelines, MiNiFi
addresses the previous concerns by providing a bare-bones version made to run on resource-constrained
edge devices and relay back information to a NiFi-based pipeline. This makes NiFi and MiNiFi ideal
to be used for scenarios in which an SDP would be developed to collect spatial information and then
process that data within a fog or cloud-based environment.

Data Pipeline with Lidar
As part of the work presented in this paper, NiFi (Apache Software Foundation, 2023) and MiNiFi
(Apache Software Foundation, 2023) were used to create an SDP that allows for the collection and
storage of lidar data being gathered from sensors installed within the Virginia St. University corridor
of Reno, Nevada. These lidar sensors are a series of Velodyne Ultra Pucks, and each can create a
360-degree point cloud of the intersections (Velodyne Lidar Inc., 2023). Each intersection in this space
has two lidar sensors installed diagonally northeast and southwest to establish a consistent setup. The
Ultra Puck sensors each produce approximately 300,000 points per second, which roughly equates to
about 6 GBs of data produced per hour. To account for this big data problem in near real-time, various
researchers started using Apache Cassandra and Spark to compute digital terrain maps or other data
stream processing frameworks (Deibe et al., 2020; Isah et al., 2019). However, the UNR-Virginia
SDP would be more like a system developed by Marosi et al. (2022) where the authors created a data
pipeline for handling different types of data flows in varying scenarios with analytics applications.
Unlike the method described above, the UNR-Virginia SDP presented in this paper does not perform
any computation with the underlying data from the lidar.

Globus
As part of the evaluation and validation section for the work presented in this paper, Globus was
chosen as a suitable system to compare the features of the UNR-Virginia SDP against, due to its wide-
spread popularity among big data researchers. Globus is a PaaS (Platform as a Service) created by
the University of Chicago, now operating as a non-profit service, used to store and transmit data. The

International Journal of Software Innovation
Volume 12 • Issue 1

4

platform allows developers to use either a software development kit or REST APIs to create Flows
within Globus. Flows are the basic-building blocks used to generate SDPs within the Globus system,
with Action Providers allowing users to extend the data pipeline. Action Providers open the door for
some customization of the basic data pipeline used to transfer files in Globus. Globus provides a wide
berth of features that includes not only the ability to send and receive data but also the ability to load
balance, transmit data in parallel streams, and validate incoming and/or outgoing files.

RSync
In the same line as Globus, RSync was also chosen as a system for comparison, due to its ease of use
and consistent use among researchers working with big data. RSync is a command-line utility that
prioritizes performance over usability to transfer files between a source and destination host while
offering features for advanced customization of a data pipeline built using the technology. This utility,
while offering limited functionality, still can robustly send and receive data and provide a decent
measure of file verification. This makes it ideal for creating data pipelines that continuously stream
a directory from the source host to the destination host. However, if the needs of a data pipeline were
to evolve to include different data processing, logging, or transformation measures, this would entail
stringing multiple RSync applications together to create a more customized data pipeline.

Design of the Data Pipeline
The UNR-Virginia SDP was designed with the consideration that the raw lidar data would be stored
into some archive where researchers could use the data for post analysis. To ensure that this process was
possible, the software pipeline needed to both be scalable and conserve resources, such as bandwidth,
CPU, and storage. In response to this need, the UNR-Virginia SDP consists of several different
components running on three different hosts. These three different hosts are: the edge computers at
the Virginia streetside, the UNR data center serving as the centralized hub, and the UNR Pronghorn
HPC Cluster. Below are some requirements that encompass the design of the data pipeline:

1. The data pipeline shall automate the process of sending lidar data as compressed files with set
name schema.

2. The data pipeline shall compress data to minimize the amount of network bandwidth and storage
used at the edge and on Pronghorn storage.

3. The data pipeline shall report the amount of time taken to save.
4. The data pipeline shall use compression algorithms to minimize the amount of CPU used at the

edge and maximize the amount of compression at the Pronghorn storage.
5. The data shall be archived on the Pronghorn HPC Cluster.
6. The data pipeline shall be scalable and easily orchestrated.

The data pipeline was designed to keep these requirements in mind. A store and forward approach
was chosen as the requirements included only archival. The store and forward approach required
the authors to consider how much space was available on the device and how much bandwidth was
available on the network. In this case, the design was based on a 100 mbps network. This network
limited how much data that could be transferred, as it was shared across six different intersections from
the edge to the data center, so a major challenge was to figure out ways to cut down on bandwidth by
compressing the data. Even with an expansion of network bandwidth capabilities, a key goal was to
minimize the data sent and have some form of quality of service in place to allow further applications
to also run on the UNR-Virginia SDP.

As shown in Figure 1 there is a high level overview of the UNR-Virginia SDP, which denotes
the software stack, alongside an illustration of the flow of data. The reporting of time and the size of
data along the pipeline is especially critical and is tracked thoroughly at each step. The spatial data is

International Journal of Software Innovation
Volume 12 • Issue 1

5

generated by a Velodyne Ultra Puck sensor emitting UDP packets that are then acquired by an edge
computer connected to a city streetlight. The UDP packets are captured using tcpdump and stored
into a PCAP file. The PCAP file with GZIP at this point is either compressed later or compressed
in real-time, then sent from the edge to the data center. At the data center, the compressed PCAP
file is uncompressed from a GZIP file to a XZ file and then sent to Pronghorn for archival storage.

At the edge, Docker Compose was used to orchestrate the setup of tcpdump and MiNiFi. Docker
Compose was chosen as the setup of this infrastructure because it could be easily replicated on any
machine that has Docker Compose installed. Docker Compose allows for rapid modification of
the configurations of MiNiFi and tcpdump to try different versions of the software and different
configurations without changing the underlying operating system. It also handles the setup of
networking between any software that is used.

At the data center, Kubernetes was used to orchestrate the setup of NiFi and all the components
that it needs to run in a cluster setup. Kubernetes was chosen because it can setup or scale many
distinct types of software across multiple machines with ease. The cluster version of NiFi was selected
to allow for the load balancing features to be used and enabled NiFi to scale for other future projects.

Implementation of the Data Pipeline
At the edge, the SPD setup included a DS-1200 embedded machine with Ubuntu 18.04 installed,
allocated with a total of 16 GB for RAM and Intel CPU i7-8700T. At the data center, the hardware
consisted of an 8-node Kubernetes cluster spread across two four-unit machines. Those machines
were a Supermicro SYS-6029TP-HTR and X11DPT-PS. The Kubernetes cluster was set up to handle
the workflow of this project and other projects on campus. Additionally, a Supermicro X11DPH-T
with 20 TB of allocated storage was put in place to serve as an intermediate storage for the 8-node
Kubernetes cluster. This intermediate storage was used as a staging area before sending it off to
Pronghorn. All nine of these machines sit in the same rack at the data center located on the UNR
campus. Each machine also used Ubuntu 18.04 for the operating system. Rancher RKE 1.0 for the
Kubernetes distribution was chosen for the implementation of this project.

NiFi, MiNiFi, and tcpdump were all placed into Docker containers. Both NiFi and MiNiFI were
configured with yaml files to set the settings of the software and data pipeline. The tcpdump container

Figure 1. High level diagram of the proposed pipeline architecture showing the flow of the PCAP from the edge to Pronghorn

International Journal of Software Innovation
Volume 12 • Issue 1

6

was designed and constructed in such a way that the collection interval and the name of the file can
be changed to include descriptive labeling such as: intersection names, what corner the lidar sensor is
on, and the municipal location of the sensor. Regarding the collection of data, it was decided to have
the tcpdump container collect data every hour and roll it to the next file to collect in another hour.

NiFi was set up as a five-node cluster that is coordinated and orchestrated by ZooKeeper. It was
designed this way to scale for the increase of data coming from intersections in the future. Apache
NiFi can handle scheduling and load balancing of any data being sent to it from the edge thanks to
its Site-To-Site protocol. Configuring the edge is made simpler in that any new intersections or edge
installations can be configured to point to this Apache NiFi cluster with a yaml file. Within this
configuration the flow can be configured to different input ports with differently named ports that
NiFi supports. Also, NiFi in conjunction with other tools can be used to create configurations for
MiNiFi like as shown in Figure 2.

edge to edge Implementation
At five different intersections that make up the Virginia St. Corridor, the two Ultra Puck sensors
collect at a rate of 10 revolutions per second. After being fully collected in an hour a PCAP file is
moved into a directory where MiNiFi will place the file into a queue to be sent off to NiFi. When
NiFI receives the file from the edge, it will place the file into a storage server within the UNR data
center. Inside of NiFi, it will queue any files that land on the storage server and start to process the
PCAP file by compressing it into a XZ file. Before it is compressed into XZ, it will check to see if the
file has already been compressed with GZIP and if it has been compressed, then it will decompress
the file. After the file has been compressed with XZ, it will finally transfer the file off to Pronghorn.
During this entire process to keep track of time, NiFi is configured to send completion time statistics

Figure 2. A screenshot of a MiNiFi configuration file

International Journal of Software Innovation
Volume 12 • Issue 1

7

to a Microsoft Teams channel setup between the Edge and NiFi as well as between the storage server
at the UNR Data Center and Pronghorn.

As shown in Figure 3 demonstrates a sequence diagram of the flow of lidar data in the data
pipeline from the edge to the archive in sequential steps. It further elucidates the details of the data
flow from Figure 1. In this figure, the size and timing information are logged to Microsoft Teams
exactly two times. The first time represents how long it took for the PCAP to reach the data center
along with any overhead from NiFi. The second time represents how long it took for the file to be
compressed to XZ and sent off to the archive. The boxes at the top of Figure 3 indicate where the
data processing is occurring.. For instance, the transformation of the PCAP from GZIP to XZ is
shown below the Data Center.

Figure 4 shows a screenshot of NiFi, a part of this paper’s workflow. A user of NiFi can specify
their workflow in the user interface. NiFi was chosen due to the ease of use and being able to specify
data flows with a GUI. This screenshot demonstrates where NiFi grabs data from MiNiFi and stores
it onto a storage chassis in the UNR data center, while statistics about the whole process are sent off
to Microsoft Teams.

The approach adopted for the UNR-Virginia SDP regarding the transferring of raw lidar
utilizes NiFi’s and MiNiFi’s Site-to-Site protocol, which in turn makes use of the RAW transport

Figure 3. A sequence diagram showing the flow of the Lidar data from the edge to the archive

International Journal of Software Innovation
Volume 12 • Issue 1

8

protocol setting. NiFi’s Site-to-Site Protocol allows for any number of MiNiFi instances to
connect to the clustered instance of NiFi. This allows for MiNiFi to be scaled up for multiple
different intersections. The MiNiFi flow was designed within NiFi and exported from it for the
deployment at the edge.

Choice of Compression Algorithm at the edge
This PCAP file was compressed in two diverse ways at the edge. The first method involved
compressing the file after it had been fully captured. The second method was compressing the file
in real-time. The first method is the easiest to implement and provides a good comparison for the
second method. The second method was implemented because it saves the time of compressing the
file afterword, but at the cost of extra computation due to compressing while recording. The lz4,
bzip, XZ, GZIP, and zstd compression algorithms were tested. GZIP was picked as the compression
algorithm between the edge and data center communication. For archival purposes, XZ was picked
as the compression algorithm at Pronghorn.

Metrics Implementation
Microsoft Teams is used for metrics collection and notifications for the software data pipeline
in a team’s channel. Teams provide a webhooks interface that allows external applications to
push messages that can be posted to the team’s channel. The webhook is configured to accept
an incoming HTTP POST request made from the data center using the Apache NiFi pipeline.
The pipeline uses metadata (called FlowFiles) attached to the transmitted PCAP file to gather
the following metrics about the incoming file from the edge: the filename, the file size, and
the transmission time. The transmission time begins when a PCAP arrives at the data center
to-be converted from GZIP compression format to a XZ compression format and ends after the
PCAP is sent to Pronghorn. A preprocessor takes the metadata within the FlowFile and creates a
formatted string that is sent via a HTTP POST message to a team’s incoming webhook endpoint.
Once the endpoint receives the message, it is then posted to a team’s channel used by members
of the university to monitor the data pipeline.

Figure 4. Screenshot of NiFi showing a portion of the data flow from the edge to the data center

International Journal of Software Innovation
Volume 12 • Issue 1

9

ReSULTS AND DISCUSSION

A subset of results was collected from Microsoft Teams and used to find out how long the overall
transfer time takes. It was found that NiFi and MiNiFi both send information at the maximum network
bandwidth supported by the 100 mbps network. The bandwidth could not exceed 100 mbps as the
information from all intersections flows through a single interconnect switch back into campus. Table
1 shows that the file size of the compression shaves off about 2 GB and saves about 3-4 minutes of
transmission time. This paper’s results show that NiFi adds about 10-12 seconds on transfer time
overhead while under normal conditions. This test was conducted to ensure that the implementation of
this software does indeed use the file network with no large bottleneck on the part of the software itself.

Both methods of compression from the third section were compared and measured using the ps
command from Linux. Both methods were run on two different PCAP files that were recorded for
one hour. Table 2 demonstrates the results for the first method where a file is compressed after being
collected from lidar sensors.

Table 3 demonstrates the results for the other method where the file is compressed as it is
collected from the lidar sensor. In Table 3, the duration within the table represents the amount of

Table 1. The bandwidth usage of original and compressed data

Method Size Bandwidth Time

Original 7 GB 11 MB/sec 10-12 min.

Original With Compression 5 GB 11 MB/sec 7-8 min.

Table 2. Non-real-time comparison

Compress Method Average CPU % Average % Mem. Total Duration
(hh:mm:ss) Size (GB) Compression Ratio

lz4 96.12 0.097 0:30.0 3.9 0.19

bzip2 99.49 0 14:32.0 3.2 0.33

XZ 99.94 0.010 32:53.0 1.9 0.6

GZIP 99.25 0 03:56.0 3.3 0.31

LZMA 99.92 0.010 32:28.0 1.9 0.6

Zstd 98.84 0 01:09.0 3.4 0.29

Original - - - 4.8 -

Table 3. Real-time comparison

Compress Method Average CPU % Average % Mem. Total Duration
(hh:mm:ss) Size (GB) Compression Ratio

lz4 0 0 1:06.0 5.2 0.19

bzip 27.14 0 20:01.0 3.4 0.47

XZ 0.010 0.010 38:01.0 2.5 0.61

GZIP 0.0006 0 07:40.0 3.9 0.39

LZMA 9.86 0 38:31.0 2.5 0.61

zstd 1.94 0 03:49.0 4.4 0.31

Original - - - 6.4 -

International Journal of Software Innovation
Volume 12 • Issue 1

10

time the program ran on the CPU, while the PCAP file was captured for one hour as reported by the
ps command. All compression algorithms included in this experiment were used with their lowest
and fastest setting.

Comparing the two tables, both XZ and LZMA have the best compression ratio but take the most
time in comparison to the other compression algorithms. Examining the second method in comparison
to the first method, the second method doesn’t nearly use as much CPU when a file is being recorded.
Looking at GZIP and lz4 for the second method, both compress the original file to 3.9 GB and 5.2
GB from 6.4 GB. Out of these two compression algorithms GZIP compresses better and only at a
slightly higher CPU usage. Based on these results, GZIP was chosen to be the compression algorithm
for the edge to data center communication. XZ was chosen to be the compression algorithm due to
its high compression ratio for storage on Pronghorn.

Table 4 shows a feature comparison across Globus, RSync, and the UNR-Virginia SDP with NiFi
and MiNiFi. Globus makes use of GridFTP to send data from one data source to another. Globus is
typically used for larger files and supports parallel network streams when sending files. This allows
Globus to send files much faster in comparison to RSync and UNR-Virginia. All three approaches
support performing file verification or some form of check summing, but the UNR-Virginia SDP would
have to specifically implement it within the data flow of NiFi and MiNiFi. Globus allows universities
to scale up their end points and set up data transfers between two different data sources. NiFi can
be scaled up due to being able to be clustered with the help of Zookeeper. RSync only supports a
straight end-to-end connection from one host to another host and does not perform load balancing
or scalability. The best that could be used with RSync is starting up multiple instances of RSync.

Neither RSync nor Globus can support custom data flows like NiFi or MiNiFi. As explained
before, NiFi allows for the users to send their data to many diverse types of options like a database,
another NiFi, a web service, and many others. This flexibility allows for the UNR-Viriginia SDP to
potentially send the data to other sources, for instance to cold storage or other collaborators who want a
live copy of the data. Also, this approach allows for further analytics to be made as data moves through
NiFi. Both Globus and RSync are good for sending data from one source to another and have some
analytics, but both lack the flexibility that NiFi gives with creating data flows inside a user interface.

Globus provides data flow capabilities, but it is best used for point-to-point transfers involving
large files. NiFi has the functionality to transform the underlying data as it flows from point-to-point.
These transformations can be anything like adding extra metadata, compressing, decompressing,
appending on new data from other sources, and other capabilities. Globus does not provide these
transformation capabilities, but it does provide overall more performance in the case of transferring a
file. NiFi was chosen for its data transformation capabilities over Globus’s data transfer performance.

However, NiFi may take some time to set up and lacks some of the ease of use of Globus’s user
interface to send files within their platform. RSync is readily available on Linux and can be utilized
by installing it as a package. While NiFi may take some setup effort and require some specific
configuration, the ability to alter the data flow with a user interface makes it easier to visualize the
flow of the data.

Table 4. A feature comparison of this paper’s approach, the UNR-Virginia SDP, vs. Globus and RSync

Features Globus RSync UNR-Virginia

Send/Receive Data X X X

Load Balancing X X

Send Data in Parallel Streams X

Customizable Data Flow X

File Verification X X X

International Journal of Software Innovation
Volume 12 • Issue 1

11

CONCLUSION AND FUTURe wORK

In this paper, it was found that using NiFi and MiNiFi produced a promising solution for transferring
lidar data. Additionally, XZ was found to be the best compression algorithm for archiving onto the
UNR’s HPC cluster due to its high compression ratio. Furthermore, compressing the PCAP file in
real-time used only a minimal amount of CPU power in comparison to recording the PCAP file and
then compressing it afterward. This compression technique reduced the transmission time by about
5 minutes and saved almost 2 GB in file size. Through the feature comparison, it was discovered
that this paper’s approach, UNR-Virginia SDP, covers a significant breadth of service among similar
systems but still lacks certain advanced features, such as enabling parallel streams. Additionally, under
this evaluation, it was found that the UNR-Virginia SDP had greater flexibility and ease of use due
to the user interface provided by NiFi.

As part of the future work, the author’s plan is to expand this method by exploring new avenues,
such as sending the PCAP to a web service to convert the raw data within the PCAP into point cloud
format. This would then be stored in a database with NiFi. NiFi allows for different quality control
(QC) and quality assurance (QA) implementations to be tested. These implementations could be
applied, for example, when the file comes from the edge to the data center or when the file is placed
into the archive at the data center. Finally, the approach presented in this paper could be potentially
adapted with additional types of devices along the Virginia St. Corridor, such as video cameras or
various time-series sensors.

ACKNOwLeDGMeNT

The authors would like to acknowledge the support of Research & Innovation and the Cyberinfrastructure
Team in the Office of Information Technology at the University of Nevada, Reno for facilitation and
access to the Pronghorn High-Performance Computing Cluster. The authors would like to acknowledge
the City of Reno. This material is based in part upon work supported by Washoe County Regional
Transportation Commission (RTC) [grant number AWD- 01-00002406]. It is also based in part upon
work supported by the National Science Foundation [grant number OAC-2209806, OIA-2019609,
and OIA-2148788]. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of Washoe County RTC or
The National Science Foundation.

International Journal of Software Innovation
Volume 12 • Issue 1

12

ReFeReNCeS

Apache Software Foundation. (2023). Apache MiNiFi. Apache Software Foundation. https://nifi.apache.org/
minifi/

Apache Software Foundation. (2023). Apache NiFi. Apache Software Foundation. https://nifi.apache.org/

Cooper, T. (2022). Municipal broadband 2022: Barriers remain an issue in 17 states. Broadband Now. https://
broadbandnow.com/report/municipal-broadband-roadblocks/

Davison, W. (2023). RSync. Samba. https://rsync.samba.org/

Deibe, D., Amor, M., & Doallo, R. (2020). Big data geospatial processing for massive aerial lidar datasets.
Remote Sensing (Basel), 12(4), 719. doi:10.3390/rs12040719

Duygan, M., Fischer, M., Pärli, R., & Ingold, K. (2022). Where do smart cities grow? The spatial and socio-
economic configurations of smart city development. Sustainable Cities and Society, 77, 103578. doi:10.1016/j.
scs.2021.103578

Foster, I., Kettimuthu, R., Martin, S., Tuecke, S., Milroy, D., Palen, B., Hauser, T., & Braden, J. (2012). Campus
bridging made easy via Globus services. In Proceedings of the 1st Conference of the Extreme Science and
Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond. XSEDE12: 2012
eXtreme Science and Engineering Discovery Environment 2012. ACM. doi:10.1145/2335755.2335847

Helu, M., Sprock, T., Hartenstine, D., Venketesh, R., & Sobel, W. (2020). Scalable data pipeline architecture to
support the industrial internet of things. CIRP Annals, 69(1), 385–388. doi:10.1016/j.cirp.2020.04.006

Isah, H., Abughofa, T., Mahfuz, S., Ajerla, D., Zulkernine, F., & Khan, S. (2019). A survey of distributed data
stream processing frameworks. IEEE Access : Practical Innovations, Open Solutions, 7, 154300–154316.
doi:10.1109/ACCESS.2019.2946884

Kim, S.-S., Lee, W.-R., & Go, J.-H. (2019). A Study on Utilization of Spatial Information in Heterogeneous
System Based on Apache NiFi. In 2019 International Conference on Information and Communication Technology
Convergence (ICTC). 2019 International Conference on Information and Communication Technology
Convergence (ICTC). IEEE. doi:10.1109/ICTC46691.2019.8939734

Marosi, A. C., Emődi, M., Farkas, A., Lovas, R., Beregi, R., Pedone, G., Németh, B., & Gáspár, P. (2022).
Toward reference architectures: A cloud-agnostic data analytics platform empowering autonomous systems.
IEEE Access : Practical Innovations, Open Solutions, 10, 60658–60673. doi:10.1109/ACCESS.2022.3180365

McCrae, S., & Zakhor, A. (2020). 3D object detection for autonomous driving using temporal lidar data.
2020 IEEE International Conference on Image Processing (ICIP), (pp. 2661-2665). IEEE. doi:10.1109/
ICIP40778.2020.9191134

Microsoft Corporation. (2023). Microsoft Teams – Group chat software. Microsoft. https://www.microsoft.com/
en-us/microsoft-teams/group-chat-software

Pandya, A., Kostakos, P., Mehmood, H., Cortes, M., Gilman, E., Oussalah, M., & Pirttikangas, S. (2019). Privacy
preserving sentiment analysis on multiple edge data streams with Apache NiFi. In 2019 European Intelligence
and Security Informatics Conference (EISIC). IEEE. doi:10.1109/EISIC49498.2019.9108851

Raptis, T. P., Cicconetti, C., Falelakis, M., Kalogiannis, G., Kanellos, T., & Lobo, T. P. (2023). Engineering
resource-efficient data management for smart cities with Apache Kafka. Future Internet, 15(2), 43. doi:10.3390/
fi15020043

Velodyne Lidar, Inc. (2023). Ultra puck surround view lidar sensor. Velodyne Lidar, Inc. https://velodynelidar.
com/products/ultra-puck/

Zhao, J., Xu, H., Liu, H., Wu, J., Zheng, Y., & Wu, D. (2019). Detection and tracking of pedestrians and vehicles
using roadside lidar sensors. Transportation Research Part C, Emerging Technologies, 100, 68–87. doi:10.1016/j.
trc.2019.01.007

https://nifi.apache.org/minifi/
https://nifi.apache.org/minifi/
https://nifi.apache.org/
https://broadbandnow.com/report/municipal-broadband-roadblocks/
https://broadbandnow.com/report/municipal-broadband-roadblocks/
https://rsync.samba.org/
http://dx.doi.org/10.3390/rs12040719
http://dx.doi.org/10.1016/j.scs.2021.103578
http://dx.doi.org/10.1016/j.scs.2021.103578
http://dx.doi.org/10.1145/2335755.2335847
http://dx.doi.org/10.1016/j.cirp.2020.04.006
http://dx.doi.org/10.1109/ACCESS.2019.2946884
http://dx.doi.org/10.1109/ICTC46691.2019.8939734
http://dx.doi.org/10.1109/ACCESS.2022.3180365
http://dx.doi.org/10.1109/ICIP40778.2020.9191134
http://dx.doi.org/10.1109/ICIP40778.2020.9191134
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
http://dx.doi.org/10.1109/EISIC49498.2019.9108851
http://dx.doi.org/10.3390/fi15020043
http://dx.doi.org/10.3390/fi15020043
https://velodynelidar.com/products/ultra-puck/
https://velodynelidar.com/products/ultra-puck/
http://dx.doi.org/10.1016/j.trc.2019.01.007
http://dx.doi.org/10.1016/j.trc.2019.01.007

International Journal of Software Innovation
Volume 12 • Issue 1

13

Chase Carthen is currently both a PhD Student in Computer Science, and an Administrative Faculty for the Office of
Information Technology at the University of Nevada, Reno. Professionally, Chase develops data-intensive pipelines
for various NSF-funded research projects and has previously worked in industry developing full stack applications
as a full stack developer. Academically, Chase focuses on the areas of Cyberinfrastructure, Machine Learning,
and Data Engineering. Chase aspires to one day become a tenure-track professor at a research institution. In his
personal life, Chase enjoys playing Dungeons and Dragons, spending time with his family, learning more about
machine learning approaches, and riding his motorcycle around Lake Tahoe.

Araam Zaremehrjardi is a master’s graduate student in the Department of Computer Science and Engineering
at the University of Nevada, Reno and is under the advisement of Dr. Sergiu Dascalu. He is expected to earn
his master’s degree in May 2025. He completed his B.S. in Computer Science and Engineering with a Minor in
Mathematics at the University of Nevada, Reno in 2023. He is a member of the Software Systems Laboratory
and the Nevada Center of Applied Research. His academic interests encompass Human-Computer Interaction
and Software Data Pipelines, alongside a focus on Smart Cities and Smart Infrastructure, particularly within
transportation systems.

Vinh Le is a PhD student under the advisement of Dr. Sergiu Dascalu and Dr. Frederick Harris, Jr. at the University
of Nevada, Reno (UNR). His interests lie primarily in Human-Computer Interaction, Software Systems, and Web
Development. Vinh defended his Master’s Thesis on the topic of Microservice Architecture for Envirosensing
Projects. He has also worked professionally as a Senior Developer working on cyberinfrastructure in state licensing
for over 20 states, including Nevada, Texas, Louisiana, and California. Currently, Vinh is one of three Capstone
Instructors for the Computer Science Department at UNR. Vinh has great passion for teaching and research, and
aspires to one day be a professor at a research university.

Carlos Cardillo is the Executive Director of the Nevada Center for Applied Research at the University of Nevada,
Reno. He received his AS in Computer Programming and BSc in Systems Engineering from the National University
of the Northeast, Argentina (1988 and 1990); MSc in Biostatistics from New York Medical College (2001) and a
PhD in Health Science Research from Trident University International, CA in 2012. He is Project Manager for
the Intelligent Mobility initiative, a User-Centered, Open-Innovation Living-Lab Ecosystem for Automated and
Connected Vehicles in Nevada and Director of Nevada Autonomous, the FAA-Designated UAS Test Site. As a
PI/Co-PI, he developed, implemented, and successfully executed large research programs sponsored by the US
Department of Transportation (DOT) and the US Department of Defense (DOD), including projects with Special
Operation Command (SOCOM) the Warfighter Enhancement Program Office and Human Performance Training
and Education program sponsored by the Office of Naval Research (ONR).

Scotty Strachan serves as Principal Research Engineer for the Nevada System of Higher Education, the state’s
university and community college system. He specializes in IT strategy and R&D for research-driven STEM
education. Scotty received his Ph.D. in Geography from the University of Nevada, Reno in 2016 while developing
and deploying globally-unique hydroclimate monitoring infrastructure in the intermountain western United States.
He is currently the cyberinfrastructure lead and co-PI of a $20MM NSF fire science project in Nevada, and lead for
the Research Engineering group at NevadaNet, the state’s primary WAN provider for education and government
internet connectivity and long-distance transport. Scotty is also a Research Affiliate with the Department of Energy
ESNet at Lawrence Berkeley National Laboratory. He actively collaborates with research technology leaders across
the country to develop cyberinfrastructure best practices, author national guidance reports to funding agencies,
and create interdisciplinary engineering teams to solve emerging science problems.

Alireza Tavakkoli is an Associate Professor in the Department of Computer Science and Engineering at the University
of Nevada, Reno. He received his BSc and MSc degrees in Electrical Engineering from the Sharif University of
Technology in 2001 and 2004, and MSC and PhD degrees in Computer Science from the University of Nevada,
Reno in 2006 and 2009. He is the Director of the Human Machine Perception Lab at UNR. His main interests are
in visual computing, artificial intelligence, and perception. His research projects are funded by federal agencies
such as NSF, NASA, NIH and DoD. He has published over 100 peer-reviewed articles and occasionally serves
as a grant review panelist as well as a reviewer for several journals and conferences. He is a senior member of
the IEEE and currently the chief guest editor of a special research topic in the journal frontiers in ophthalmology.

Frederick C. Harris, Jr. is a Foundation Professor in the Department of Computer Science and Engineering and
Associate Dean in the College of Engineering at the University of Nevada, Reno. He received his BS and MS
degrees in Mathematics and Educational Administration from Bob Jones University, and went on and received his
MS and Ph.D. degrees in Computer Science from Clemson University. He is co-Director of the Software Systems
Lab at UNR. He is also the Nevada State EPSCoR Director and the Project Director for Nevada NSF EPSCoR.
He has published more than 300 peer-reviewed journal and conference papers along with several book chapters
and has edited or co-edited 14 books. He has had 14 PhD students and 81 MS Thesis students finish under his
supervision. His research interests are in parallel computation, simulation, computer graphics, and virtual reality.
He is a Senior Member of the ACM.

International Journal of Software Innovation
Volume 12 • Issue 1

14

Sergiu Dascalu is a Professor in the Department of Computer Science and Engineering at the University of Nevada,
Reno. He received a Master’s degree in Automatic Control and Computers from the Polytechnic of Bucharest,
Romania (1982) and a PhD in Computer Science from Dalhousie University, Canada (2001). He is the co-Director
of the Software Systems Lab at UNR. His main interests are in software engineering, human-computer interaction,
and data science. He has worked on many research projects funded by federal agencies such as NSF, NASA, and
DoD-ONR. He has published over 250 peer-reviewed papers. Also, he received several awards, including the 2011
UNR F. Donald Tibbitts Distinguished Teacher of the Year Award and the 2019 UNR Vada Trimble Outstanding
Graduate Mentor Award. He has been a panelist for several NSF program solicitations as well as reviewer for over
15 journals. He is a senior member of the ACM.

