
DOI: 10.4018/IJSI.333164

International Journal of Software Innovation
Volume 12 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Novel Spatial Data Pipeline for 
Orchestrating Apache NiFi/MiNiFi
Chase D. Carthen, University of Nevada, Reno, USA*

 https://orcid.org/0009-0006-7027-5212

Araam Zaremehrjardi, University of Nevada, Reno, USA

Vinh Le, University of Nevada, Reno, USA

Carlos Cardillo, University of Nevada, Reno, USA

Scotty Strachan, Nevada System of Higher Education, USA

Alireza Tavakkoli and  Maketitle, University of Nevada, Reno, USA

Frederick C. Harris Jr., University of Nevada, Reno, USA

 https://orcid.org/0000-0002-0857-6931

Sergiu M. Dascalu, University of Nevada, Reno, USA

ABSTRACT

In many smart city projects, a common choice to capture spatial information is the inclusion of lidar 
data, but this decision will often invoke severe growing pains within the existing infrastructure. In this 
article, the authors introduce a data pipeline that orchestrates Apache NiFi (NiFi), Apache MiNiFi 
(MiNiFi), and several other tools as an automated solution to relay and archive lidar data captured 
by deployed edge devices. The lidar sensors utilized within this workflow are Velodyne Ultra Puck 
sensors that produce 6-7 GB packet capture (PCAP) files per hour. By both compressing the file 
after capturing it and compressing the file in real-time; it was discovered that GZIP and XZ both 
saved considerable file size being from 2-5 GB, 5 minutes in transmission time, and considerable 
CPU time. To evaluate the capabilities of the system design, the features of this data pipeline were 
compared against existing third-party services, Globus and RSync.
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INTRODUCTION

As cities begin employing more and more complex sensing devices to either conduct traffic analysis 
or provide a measure of infrastructure, creating a system for data transferal becomes a crucial 
challenge. For smart city projects, spatial information such as Light Detection and Ranging (lidar) 
is especially a concern. Due to the massive amount of data generated by lidar point clouds, data 
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collection and transferal from edge device to central repository tends to suffer from bottle-necking 
issues, such as low throughput networking, high latency, and packet-loss. These constraints must be 
considered as most cities in the United States may have difficulty placing fiber optic infrastructure 
in their cities (Cooper, 2022).

As part of ongoing smart city developments in the city of Reno, Nevada, the work presented 
within this paper involves a 100 mbps fiber network provided by the city of Reno. While this network 
was deployed to specifically address the cyber-infrastructure needs within the city of Reno, this called 
for the development of a Software Data Pipeline (SDP) that could enable reliable data transformation, 
transferal, and logging between edge computers and the fog computing network.

In this paper, the authors developed an SDP that leverages NiFi/MiNiFi to facilitate the movement 
of lidar data generated at various edge computing locations placed around the city of Reno, specifically 
the Virginia Street corridor. This data is relayed to the fog computing network located at the University 
of Nevada, Reno (UNR), which is then finally piped towards its destination, UNR’s Pronghorn High 
Performance Computing Cluster, for archival storage. The software on the edge environments use 
Docker Compose with MiNiFi to hook into the NiFi-based data pipeline in which the lidar point-
clouds are compressed and then transmitted off. The software within the UNR Data Center uses 
Kubernetes to scale up NiFi hosts and receive the lidar point clouds, which are then processed for 
storage. To ease any confusion, the name “UNR-Virginia SDP” was chosen as the colloquial name 
to refer to the SDP approach presented in this paper.

The UNR-Virginia SDP does offer some insights for those interested in establishing a scalable 
pipeline for spatial data collection within smart city infrastructure (Duygan et al., 2022). With the 
increasing interest in smart city development, the UNR-Virginia SDP provides a template so that other 
cities with similar network infrastructure may easily incorporate lidar data collection as part of their 
normal workflow. Due to the versatility of lidar data, lidar collection presents more opportunities 
for cities to better utilize big data methodologies for effective planning or the establishment of new 
data-driven solutions (McCrae & Zakhor, 2020; Zhao et al., 2019).

As a form of evaluation for the UNR-Virginia SDP, the authors conducted an analysis of different 
compression algorithms, compared the discussed approach with the present network bandwidth, 
and finally performed a feature comparison with major established third-party services, RSync 
(Davison, 2023) and Globus (Foster et al., 2012). Furthermore, additional metrics gathered from the 
UNR-Virginia SDP were recorded, such as the bandwidth usage, resource usage on edge devices, 
and recording time for message transfer. To elaborate, this involved testing different compression 
methods in terms of resource usage, average CPU usage, average memory usage, total duration time, 
and size of messages. As part of the feature comparison, RSync and Globus were compared against 
the UNR-Virginia SDP for basic functionality of data transmission and receiving, load balancing, 
parallel streaming support, the customization of data flow, and file verification.

The remainder of this paper is structured as follows: the first section presents background 
information of the technologies explored and used by the UNR-Virginia SDP, the second section 
describes the design of the UNR-Virginia SDP with considerations and expected requirements of the 
data pipeline, the third section details the resulting implementation of the planned design and data 
flow, the fourth section presents the overall performance evaluation of the software data pipeline 
with benchmarks and comparisons of other methods, and the final section discusses possible uses of 
the data pipeline and outlines future work to extend its functionality.

BACKGROUND AND ReLATeD wORKS

Data Pipeline Approaches
With the increasing interest in both cloud and fog computing, different approaches have been explored 
to facilitate streams of data that require high throughput, intense bandwidth usage, and consistent 
access across different network scenarios. In general, the very nature of these data streams presents 
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certain difficulties to system architects when designing the software and may require advanced big 
data techniques. In response to this, SDPs are often presented as solutions to abstracting data streams 
by utilizing either custom software or preexisting suites of third-party tools. One such SDP approach 
differs from the UNR-Virginia SDP presented in this paper and explored a combination of MQTT 
and Apache Kafka for processing data streams originating from industrial IoT devices. Both Helu 
et al. (2020) and Raptis et al. (2023) have used MQTT and Apache Kafka in conjunction with NiFi 
for industrial replated applications. Another similar SDP approach involved the usage of NiFi and 
MiNiFi to process spatial information captured from Twitter streams while doing some analysis on 
the acquired data. Kim et al. (2019) designed a custom NiFi processor for extracting spatial data from 
data sources such as Twitter. Pandya et al. (2019) made use of this approach by extracting data from 
Twitter with NiFi and MiNiFi and doing sentiment analysis on the acquired data.

NiFi/MiNiFi
A major portion of the UNR-Virginia SDP relies on NiFi and MiNiFi. Together, NiFi and MiNiFi are 
especially viable for SDPs in that they enable APIs to build data transformers, loggers, and other data 
flow measures. NiFi is composed of components called “Processors”, and the data passed between 
these processors, dubbed “Flow Files”, contain the data being transferred and additional metadata 
pertaining to the transfer. These processors used in a NiFi pipeline allow one to create, remove, modify, 
or inspect the contents of a flow file. Additionally, NiFi/MiNiFi allows users to create their own 
processors, which opens the door for greater control and manipulation of the data within a pipeline. 
NiFi operates with data producers and data consumers, dubbed “Agents”, and alongside the flow 
files and processors, represent the abstract building blocks to an SDP within NiFi. However, NiFi 
has the capability of over-bloating a system with tools that are not necessary for remote systems with 
constrained resources. While NiFi offers the full-suite of tools for building data pipelines, MiNiFi 
addresses the previous concerns by providing a bare-bones version made to run on resource-constrained 
edge devices and relay back information to a NiFi-based pipeline. This makes NiFi and MiNiFi ideal 
to be used for scenarios in which an SDP would be developed to collect spatial information and then 
process that data within a fog or cloud-based environment.

Data Pipeline with Lidar
As part of the work presented in this paper, NiFi (Apache Software Foundation, 2023) and MiNiFi 
(Apache Software Foundation, 2023) were used to create an SDP that allows for the collection and 
storage of lidar data being gathered from sensors installed within the Virginia St. University corridor 
of Reno, Nevada. These lidar sensors are a series of Velodyne Ultra Pucks, and each can create a 
360-degree point cloud of the intersections (Velodyne Lidar Inc., 2023). Each intersection in this space 
has two lidar sensors installed diagonally northeast and southwest to establish a consistent setup. The 
Ultra Puck sensors each produce approximately 300,000 points per second, which roughly equates to 
about 6 GBs of data produced per hour. To account for this big data problem in near real-time, various 
researchers started using Apache Cassandra and Spark to compute digital terrain maps or other data 
stream processing frameworks (Deibe et al., 2020; Isah et al., 2019). However, the UNR-Virginia 
SDP would be more like a system developed by Marosi et al. (2022) where the authors created a data 
pipeline for handling different types of data flows in varying scenarios with analytics applications. 
Unlike the method described above, the UNR-Virginia SDP presented in this paper does not perform 
any computation with the underlying data from the lidar.

Globus
As part of the evaluation and validation section for the work presented in this paper, Globus was 
chosen as a suitable system to compare the features of the UNR-Virginia SDP against, due to its wide-
spread popularity among big data researchers. Globus is a PaaS (Platform as a Service) created by 
the University of Chicago, now operating as a non-profit service, used to store and transmit data. The 
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platform allows developers to use either a software development kit or REST APIs to create Flows 
within Globus. Flows are the basic-building blocks used to generate SDPs within the Globus system, 
with Action Providers allowing users to extend the data pipeline. Action Providers open the door for 
some customization of the basic data pipeline used to transfer files in Globus. Globus provides a wide 
berth of features that includes not only the ability to send and receive data but also the ability to load 
balance, transmit data in parallel streams, and validate incoming and/or outgoing files.

RSync
In the same line as Globus, RSync was also chosen as a system for comparison, due to its ease of use 
and consistent use among researchers working with big data. RSync is a command-line utility that 
prioritizes performance over usability to transfer files between a source and destination host while 
offering features for advanced customization of a data pipeline built using the technology. This utility, 
while offering limited functionality, still can robustly send and receive data and provide a decent 
measure of file verification. This makes it ideal for creating data pipelines that continuously stream 
a directory from the source host to the destination host. However, if the needs of a data pipeline were 
to evolve to include different data processing, logging, or transformation measures, this would entail 
stringing multiple RSync applications together to create a more customized data pipeline.

Design of the Data Pipeline
The UNR-Virginia SDP was designed with the consideration that the raw lidar data would be stored 
into some archive where researchers could use the data for post analysis. To ensure that this process was 
possible, the software pipeline needed to both be scalable and conserve resources, such as bandwidth, 
CPU, and storage. In response to this need, the UNR-Virginia SDP consists of several different 
components running on three different hosts. These three different hosts are: the edge computers at 
the Virginia streetside, the UNR data center serving as the centralized hub, and the UNR Pronghorn 
HPC Cluster. Below are some requirements that encompass the design of the data pipeline:

1.  The data pipeline shall automate the process of sending lidar data as compressed files with set 
name schema.

2.  The data pipeline shall compress data to minimize the amount of network bandwidth and storage 
used at the edge and on Pronghorn storage.

3.  The data pipeline shall report the amount of time taken to save.
4.  The data pipeline shall use compression algorithms to minimize the amount of CPU used at the 

edge and maximize the amount of compression at the Pronghorn storage.
5.  The data shall be archived on the Pronghorn HPC Cluster.
6.  The data pipeline shall be scalable and easily orchestrated.

The data pipeline was designed to keep these requirements in mind. A store and forward approach 
was chosen as the requirements included only archival. The store and forward approach required 
the authors to consider how much space was available on the device and how much bandwidth was 
available on the network. In this case, the design was based on a 100 mbps network. This network 
limited how much data that could be transferred, as it was shared across six different intersections from 
the edge to the data center, so a major challenge was to figure out ways to cut down on bandwidth by 
compressing the data. Even with an expansion of network bandwidth capabilities, a key goal was to 
minimize the data sent and have some form of quality of service in place to allow further applications 
to also run on the UNR-Virginia SDP.

As shown in Figure 1 there is a high level overview of the UNR-Virginia SDP, which denotes 
the software stack, alongside an illustration of the flow of data. The reporting of time and the size of 
data along the pipeline is especially critical and is tracked thoroughly at each step. The spatial data is 
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generated by a Velodyne Ultra Puck sensor emitting UDP packets that are then acquired by an edge 
computer connected to a city streetlight. The UDP packets are captured using tcpdump and stored 
into a PCAP file. The PCAP file with GZIP at this point is either compressed later or compressed 
in real-time, then sent from the edge to the data center. At the data center, the compressed PCAP 
file is uncompressed from a GZIP file to a XZ file and then sent to Pronghorn for archival storage.

At the edge, Docker Compose was used to orchestrate the setup of tcpdump and MiNiFi. Docker 
Compose was chosen as the setup of this infrastructure because it could be easily replicated on any 
machine that has Docker Compose installed. Docker Compose allows for rapid modification of 
the configurations of MiNiFi and tcpdump to try different versions of the software and different 
configurations without changing the underlying operating system. It also handles the setup of 
networking between any software that is used.

At the data center, Kubernetes was used to orchestrate the setup of NiFi and all the components 
that it needs to run in a cluster setup. Kubernetes was chosen because it can setup or scale many 
distinct types of software across multiple machines with ease. The cluster version of NiFi was selected 
to allow for the load balancing features to be used and enabled NiFi to scale for other future projects.

Implementation of the Data Pipeline
At the edge, the SPD setup included a DS-1200 embedded machine with Ubuntu 18.04 installed, 
allocated with a total of 16 GB for RAM and Intel CPU i7-8700T. At the data center, the hardware 
consisted of an 8-node Kubernetes cluster spread across two four-unit machines. Those machines 
were a Supermicro SYS-6029TP-HTR and X11DPT-PS. The Kubernetes cluster was set up to handle 
the workflow of this project and other projects on campus. Additionally, a Supermicro X11DPH-T 
with 20 TB of allocated storage was put in place to serve as an intermediate storage for the 8-node 
Kubernetes cluster. This intermediate storage was used as a staging area before sending it off to 
Pronghorn. All nine of these machines sit in the same rack at the data center located on the UNR 
campus. Each machine also used Ubuntu 18.04 for the operating system. Rancher RKE 1.0 for the 
Kubernetes distribution was chosen for the implementation of this project.

NiFi, MiNiFi, and tcpdump were all placed into Docker containers. Both NiFi and MiNiFI were 
configured with yaml files to set the settings of the software and data pipeline. The tcpdump container 

Figure 1. High level diagram of the proposed pipeline architecture showing the flow of the PCAP from the edge to Pronghorn
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was designed and constructed in such a way that the collection interval and the name of the file can 
be changed to include descriptive labeling such as: intersection names, what corner the lidar sensor is 
on, and the municipal location of the sensor. Regarding the collection of data, it was decided to have 
the tcpdump container collect data every hour and roll it to the next file to collect in another hour.

NiFi was set up as a five-node cluster that is coordinated and orchestrated by ZooKeeper. It was 
designed this way to scale for the increase of data coming from intersections in the future. Apache 
NiFi can handle scheduling and load balancing of any data being sent to it from the edge thanks to 
its Site-To-Site protocol. Configuring the edge is made simpler in that any new intersections or edge 
installations can be configured to point to this Apache NiFi cluster with a yaml file. Within this 
configuration the flow can be configured to different input ports with differently named ports that 
NiFi supports. Also, NiFi in conjunction with other tools can be used to create configurations for 
MiNiFi like as shown in Figure 2.

edge to edge Implementation
At five different intersections that make up the Virginia St. Corridor, the two Ultra Puck sensors 
collect at a rate of 10 revolutions per second. After being fully collected in an hour a PCAP file is 
moved into a directory where MiNiFi will place the file into a queue to be sent off to NiFi. When 
NiFI receives the file from the edge, it will place the file into a storage server within the UNR data 
center. Inside of NiFi, it will queue any files that land on the storage server and start to process the 
PCAP file by compressing it into a XZ file. Before it is compressed into XZ, it will check to see if the 
file has already been compressed with GZIP and if it has been compressed, then it will decompress 
the file. After the file has been compressed with XZ, it will finally transfer the file off to Pronghorn. 
During this entire process to keep track of time, NiFi is configured to send completion time statistics 

Figure 2. A screenshot of a MiNiFi configuration file
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to a Microsoft Teams channel setup between the Edge and NiFi as well as between the storage server 
at the UNR Data Center and Pronghorn.

As shown in Figure 3 demonstrates a sequence diagram of the flow of lidar data in the data 
pipeline from the edge to the archive in sequential steps. It further elucidates the details of the data 
flow from Figure 1. In this figure, the size and timing information are logged to Microsoft Teams 
exactly two times. The first time represents how long it took for the PCAP to reach the data center 
along with any overhead from NiFi. The second time represents how long it took for the file to be 
compressed to XZ and sent off to the archive. The boxes at the top of Figure 3 indicate where the 
data processing is occurring.. For instance, the transformation of the PCAP from GZIP to XZ is 
shown below the Data Center.

Figure 4 shows a screenshot of NiFi, a part of this paper’s workflow. A user of NiFi can specify 
their workflow in the user interface. NiFi was chosen due to the ease of use and being able to specify 
data flows with a GUI. This screenshot demonstrates where NiFi grabs data from MiNiFi and stores 
it onto a storage chassis in the UNR data center, while statistics about the whole process are sent off 
to Microsoft Teams.

The approach adopted for the UNR-Virginia SDP regarding the transferring of raw lidar 
utilizes NiFi’s and MiNiFi’s Site-to-Site protocol, which in turn makes use of the RAW transport 

Figure 3. A sequence diagram showing the flow of the Lidar data from the edge to the archive
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protocol setting. NiFi’s Site-to-Site Protocol allows for any number of MiNiFi instances to 
connect to the clustered instance of NiFi. This allows for MiNiFi to be scaled up for multiple 
different intersections. The MiNiFi flow was designed within NiFi and exported from it for the 
deployment at the edge.

Choice of Compression Algorithm at the edge
This PCAP file was compressed in two diverse ways at the edge. The first method involved 
compressing the file after it had been fully captured. The second method was compressing the file 
in real-time. The first method is the easiest to implement and provides a good comparison for the 
second method. The second method was implemented because it saves the time of compressing the 
file afterword, but at the cost of extra computation due to compressing while recording. The lz4, 
bzip, XZ, GZIP, and zstd compression algorithms were tested. GZIP was picked as the compression 
algorithm between the edge and data center communication. For archival purposes, XZ was picked 
as the compression algorithm at Pronghorn.

Metrics Implementation
Microsoft Teams is used for metrics collection and notifications for the software data pipeline 
in a team’s channel. Teams provide a webhooks interface that allows external applications to 
push messages that can be posted to the team’s channel. The webhook is configured to accept 
an incoming HTTP POST request made from the data center using the Apache NiFi pipeline. 
The pipeline uses metadata (called FlowFiles) attached to the transmitted PCAP file to gather 
the following metrics about the incoming file from the edge: the filename, the file size, and 
the transmission time. The transmission time begins when a PCAP arrives at the data center 
to-be converted from GZIP compression format to a XZ compression format and ends after the 
PCAP is sent to Pronghorn. A preprocessor takes the metadata within the FlowFile and creates a 
formatted string that is sent via a HTTP POST message to a team’s incoming webhook endpoint. 
Once the endpoint receives the message, it is then posted to a team’s channel used by members 
of the university to monitor the data pipeline.

Figure 4. Screenshot of NiFi showing a portion of the data flow from the edge to the data center
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ReSULTS AND DISCUSSION

A subset of results was collected from Microsoft Teams and used to find out how long the overall 
transfer time takes. It was found that NiFi and MiNiFi both send information at the maximum network 
bandwidth supported by the 100 mbps network. The bandwidth could not exceed 100 mbps as the 
information from all intersections flows through a single interconnect switch back into campus. Table 
1 shows that the file size of the compression shaves off about 2 GB and saves about 3-4 minutes of 
transmission time. This paper’s results show that NiFi adds about 10-12 seconds on transfer time 
overhead while under normal conditions. This test was conducted to ensure that the implementation of 
this software does indeed use the file network with no large bottleneck on the part of the software itself.

Both methods of compression from the third section were compared and measured using the ps 
command from Linux. Both methods were run on two different PCAP files that were recorded for 
one hour. Table 2 demonstrates the results for the first method where a file is compressed after being 
collected from lidar sensors.

Table 3 demonstrates the results for the other method where the file is compressed as it is 
collected from the lidar sensor. In Table 3, the duration within the table represents the amount of 

Table 1. The bandwidth usage of original and compressed data

Method Size Bandwidth Time

Original 7 GB 11 MB/sec 10-12 min.

Original With Compression 5 GB 11 MB/sec 7-8 min.

Table 2. Non-real-time comparison

Compress Method Average CPU % Average % Mem. Total Duration 
(hh:mm:ss) Size (GB) Compression Ratio

lz4 96.12 0.097 0:30.0 3.9 0.19

bzip2 99.49 0 14:32.0 3.2 0.33

XZ 99.94 0.010 32:53.0 1.9 0.6

GZIP 99.25 0 03:56.0 3.3 0.31

LZMA 99.92 0.010 32:28.0 1.9 0.6

Zstd 98.84 0 01:09.0 3.4 0.29

Original - - - 4.8 -

Table 3. Real-time comparison

Compress Method Average CPU % Average % Mem. Total Duration 
(hh:mm:ss) Size (GB) Compression Ratio

lz4 0 0 1:06.0 5.2 0.19

bzip 27.14 0 20:01.0 3.4 0.47

XZ 0.010 0.010 38:01.0 2.5 0.61

GZIP 0.0006 0 07:40.0 3.9 0.39

LZMA 9.86 0 38:31.0 2.5 0.61

zstd 1.94 0 03:49.0 4.4 0.31

Original - - - 6.4 -
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time the program ran on the CPU, while the PCAP file was captured for one hour as reported by the 
ps command. All compression algorithms included in this experiment were used with their lowest 
and fastest setting.

Comparing the two tables, both XZ and LZMA have the best compression ratio but take the most 
time in comparison to the other compression algorithms. Examining the second method in comparison 
to the first method, the second method doesn’t nearly use as much CPU when a file is being recorded. 
Looking at GZIP and lz4 for the second method, both compress the original file to 3.9 GB and 5.2 
GB from 6.4 GB. Out of these two compression algorithms GZIP compresses better and only at a 
slightly higher CPU usage. Based on these results, GZIP was chosen to be the compression algorithm 
for the edge to data center communication. XZ was chosen to be the compression algorithm due to 
its high compression ratio for storage on Pronghorn.

Table 4 shows a feature comparison across Globus, RSync, and the UNR-Virginia SDP with NiFi 
and MiNiFi. Globus makes use of GridFTP to send data from one data source to another. Globus is 
typically used for larger files and supports parallel network streams when sending files. This allows 
Globus to send files much faster in comparison to RSync and UNR-Virginia. All three approaches 
support performing file verification or some form of check summing, but the UNR-Virginia SDP would 
have to specifically implement it within the data flow of NiFi and MiNiFi. Globus allows universities 
to scale up their end points and set up data transfers between two different data sources. NiFi can 
be scaled up due to being able to be clustered with the help of Zookeeper. RSync only supports a 
straight end-to-end connection from one host to another host and does not perform load balancing 
or scalability. The best that could be used with RSync is starting up multiple instances of RSync.

Neither RSync nor Globus can support custom data flows like NiFi or MiNiFi. As explained 
before, NiFi allows for the users to send their data to many diverse types of options like a database, 
another NiFi, a web service, and many others. This flexibility allows for the UNR-Viriginia SDP to 
potentially send the data to other sources, for instance to cold storage or other collaborators who want a 
live copy of the data. Also, this approach allows for further analytics to be made as data moves through 
NiFi. Both Globus and RSync are good for sending data from one source to another and have some 
analytics, but both lack the flexibility that NiFi gives with creating data flows inside a user interface.

Globus provides data flow capabilities, but it is best used for point-to-point transfers involving 
large files. NiFi has the functionality to transform the underlying data as it flows from point-to-point. 
These transformations can be anything like adding extra metadata, compressing, decompressing, 
appending on new data from other sources, and other capabilities. Globus does not provide these 
transformation capabilities, but it does provide overall more performance in the case of transferring a 
file. NiFi was chosen for its data transformation capabilities over Globus’s data transfer performance.

However, NiFi may take some time to set up and lacks some of the ease of use of Globus’s user 
interface to send files within their platform. RSync is readily available on Linux and can be utilized 
by installing it as a package. While NiFi may take some setup effort and require some specific 
configuration, the ability to alter the data flow with a user interface makes it easier to visualize the 
flow of the data.

Table 4. A feature comparison of this paper’s approach, the UNR-Virginia SDP, vs. Globus and RSync

Features Globus RSync UNR-Virginia

Send/Receive Data X X X

Load Balancing X X

Send Data in Parallel Streams X

Customizable Data Flow X

File Verification X X X
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CONCLUSION AND FUTURe wORK

In this paper, it was found that using NiFi and MiNiFi produced a promising solution for transferring 
lidar data. Additionally, XZ was found to be the best compression algorithm for archiving onto the 
UNR’s HPC cluster due to its high compression ratio. Furthermore, compressing the PCAP file in 
real-time used only a minimal amount of CPU power in comparison to recording the PCAP file and 
then compressing it afterward. This compression technique reduced the transmission time by about 
5 minutes and saved almost 2 GB in file size. Through the feature comparison, it was discovered 
that this paper’s approach, UNR-Virginia SDP, covers a significant breadth of service among similar 
systems but still lacks certain advanced features, such as enabling parallel streams. Additionally, under 
this evaluation, it was found that the UNR-Virginia SDP had greater flexibility and ease of use due 
to the user interface provided by NiFi.

As part of the future work, the author’s plan is to expand this method by exploring new avenues, 
such as sending the PCAP to a web service to convert the raw data within the PCAP into point cloud 
format. This would then be stored in a database with NiFi. NiFi allows for different quality control 
(QC) and quality assurance (QA) implementations to be tested. These implementations could be 
applied, for example, when the file comes from the edge to the data center or when the file is placed 
into the archive at the data center. Finally, the approach presented in this paper could be potentially 
adapted with additional types of devices along the Virginia St. Corridor, such as video cameras or 
various time-series sensors.
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